Crystal structure of the Hexachlorocyclohexane dehydrochlorinase (LinA-type2): mutational analysis, thermostability & enantioselectivity

Show simple item record

dc.contributor.author Macwan, A S
dc.contributor.author Kukshal, Vandna
dc.contributor.author Srivastava, Nidhi
dc.contributor.author Javed, Saleem
dc.contributor.author Kumar, Ashwani
dc.contributor.author Ramachandran, Ravishankar
dc.date.accessioned 2013-03-07T10:26:25Z
dc.date.available 2013-03-07T10:26:25Z
dc.date.issued 2012
dc.identifier.citation Plos ONE 2012, 7 (11), e50373 en
dc.identifier.uri http://hdl.handle.net/123456789/1022
dc.description.abstract Hexachlorocyclohexane dehydrochlorinase (LinA) mediates dehydrochlorination of -HCH to 1, 3, 4, 6-tetrachloro-1,4-cyclohexadiene that constitutes first step of the aerobic degradation pathway. We report the 3.5 Å crystal structure of a thermostable LinA-type2 protein, obtained from a soil metagenome, in the hexagonal space group P6¬322 with unit cell parameters a=b=162.5, c=186.3 Å, respectively. The structure was solved by molecular replacement using the co-ordinates of LinA-type1 that exhibits mesophile-like properties. Structural comparison of LinA-type2 and -type1 proteins suggests that thermostability of LinA-type2 might partly arise due to presence of higher number of ionic interactions, along with 4% increase in the intersubunit buried surface area. Mutational analysis involving the differing residues between the type1 and type2 proteins, circular dichroism experiments and functional assays suggest that Q20 and G23 are determinants of stability for LinA-type2. It was earlier reported that LinA-type1 exhibits enantioselectivity for the (-) enantiomer of α-HCH. Contrastingly, we identified that type2 protein prefers the (+) enantiomer of α-HCH. Structural analysis and molecular docking experiments suggest that changed residues K20Q, L96C and A131G, vicinal to the active, site are probably responsible for the altered enantioselectivity of LinA-type2. Overall the study has identified features responsible for the thermostability and enantioselectivity of LinA-type2 that can be exploited for the design of variants for specific biotechnological applications. en
dc.format.extent 1465115 bytes
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartofseries CSIR-CDRI communication no. 8338 en
dc.subject Crystal structure en
dc.subject LinA-type2 en
dc.subject Thermostability en
dc.subject Enantio-selectivity en
dc.subject Mutational analysis en
dc.subject Hexachlorocyclohexane en
dc.subject Dehydrochlorinase en
dc.title Crystal structure of the Hexachlorocyclohexane dehydrochlorinase (LinA-type2): mutational analysis, thermostability & enantioselectivity en
dc.type Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account